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Correlations for Parameter-Dependent 
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Correlations for parameter-dependent Gaussian random matrices, intermediate 
between symmetric and Hermitian and antisymmetric Hermitian and Hermitian, 
are calculated. The (dynamical) density-density correlation between eigenvalues 
at different values of the parameter is calculated for the symmetric to Hermitian 
transition and the scaled N ~  oo limit is computed. For the antisymmetric 
Hermitian to Hermitian transition the equal-parameter n-point distribution 
function is calculated and the scaled limit computed. A circular version of the 
antisymmetric Hermitian to Hermitian transition is formulated. In the thermo- 
dynamic limit the equal-parameter distribution function is shown to coincide 
with the scaled-limit expression of this distribution for the Gaussian anti- 
symmetric Hermitian to Hermitian transition. Furthermore, the thermodynamic 
limit of the corresponding density--density correlation is computed. The results 
for the correlations are illustrated by comparison with empirical correlations 
calculated from numerical data obtained from computer-generated Gaussian 
random matrices. 

KEY WORDS: Random matrices; correlations; skew-orthogonal poly- 
nomials. 

1. I N T R O D U C T I O N  

Mehta  and  Pandey  ~) in t roduced  pa ramete r -dependen t  Gauss ian  r a n d o m  
matrices in termediate  between symmetr ic  and  Hermit ian,  and  an t i -Hermi t ian  

and  Hermi t ian ,  and  calculated the co r r e spond ing  equa l -pa rame te r  n-point  
d is t r ibut ion function. In the former  case the dis t r ibut ions  were eva lua ted  in 
the t h e r m o d y n a m i c  limit and  subsequent ly  shown (see e.g. ref. 2) to have 
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observable consequences in models of quantum chaos with symmetry inter- 
mediate between orthogonal and unitary. In both cases, for finite N the one 
and two-point distribution can be empirically calculated from computer 
generated Gaussian random matrices (examples will be given below) and 
the theoretical predictions realized up to statistical accuracy. 

In addition to the observable consequences of the results of Mehta and 
Pandey, the actual calculations have a number of noteworthy features. 
First, the problem of determining the joint distribution of the eigenvalues 
of parameter dependent random matrices is equivalent to solving a Fokker- 
Planck equation introduced by Dyson. (3) This Fokker-Planck equation can 
be interpreted as describing the Brownian motion evolution of a classical 
gas of particles repelling each other by a logarithmic potential, and confined 
to the neighborhood of the origin by a harmonic potential. Second, the 
expressions for the equal-parameter n-point distributions extend Mehta's 
quaternion determinant �9 _(4) expressmns for the n-point distributions of 
Gaussian symmetric and Hermitian random matrices. 

Further aspects of parameter-dependent Gaussian random matrices 
intermediate between symmetric and Hermitian, and anti-Hermitian and 
Hermitian are the topic of this paper. In addition to the equal-parameter 
distributions, a quantity of primary interest in the theory and applications 
of parameter-dependent random matrices is the (dynamical) density- 
density correlation dpf((Xa, "t'a) , (Xb, 'rb) ). For the circular ensemble COE 
to CUE transition this has been recently calculated in the thermodynamic 
limit to be given by [ ref. 5; only the case z a = 0 was explicitly considered, 
but a straightforward extension of the method gives the result for general ra] 

~P(2)~)t(x~, , to), (x~, r~)) 

=p2 ( f f  du, e-(.b-..)(,,a,,t)2/2 cos nuip(xb_x , , )  

I2 x du2 e ~ -  ~")('w"2)2/2 cos rm2p(Xb -- Xa) 

f l m e - -  ( ra  + "Cb)lTtPUl )2/2 
sin rculp(Xb -- Xa) + du~ ul 

, ) X f du 2 u2 etr,'+'cb)(ttpu2)2/2 sin ~zu2p(Xb--Xa) 
Jo 

(1.1) 

(the superscript (C) on the 1.h.s. denotes the use of the circular ensemble, 
r denotes the parameter and x denotes the eigenvalue). In Section 2, after 
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a brief revision, aP~) will be calculated for the transition between sym- 
metric and Hermitian random matrices. In the large-N limit, after 
appropriate scaling, the result (1.1) is reclaimed. Our method of calculation 
makes use of skew-orthogonal polynomials arid functional differentiation, 
and we present formulas which are applicable to a wider class of Brownian 
motion problems. 

In Section 3 the transition between Gaussian anti-symmetric Hermitian 
and Gaussian Hermitian (i.e. GUE) random matrices is considered. In 
particular, it is shown how the results of Mehta and Pandey for the equal- 
parameter distribution can be obtained in a systematic way by using the 
skew-orthogonal polynomials of the previous section and the general 
formulas of Frahm and Pichard (6) which express the equal-parameter dis- 
tributions as quaternion determinants. Furthermore, the scaled N--, m 
limit of the distributions is computed (this was not given by Mehta and 
Pandey). 

Sections 4 and 5 address a circular ensemble version of the anti-sym- 
metric Hermitian to Hermitian transition. In Section 4, using the general 
formalism of the previous section, the equal parameter distributions are 
expressed as quaternion determinants, and the thermodynamic limit is 
taken. Agreement with the expression obtained for the Gaussian case is 
found. In Section 5 the dynamical density-density correlation n c~ ~P~2~ ((x~, 0), 
(xb, ~b)) is computed in the thermodynamic limit. 

2. DENSITY-DENSITY  CORRELATION FOR THE GOE TO 
GUE TRANSIT ION 

2.1. Revision 

Before calculating the density--density correlation, we will briefly revise 
the definition of parameter-dependent Gaussian Hermitian random matrices, 
the relationship between the corresponding eigenvalue distribution and the 
Fokker-Planck equation, and the Green function solution of the Fokker- 
Planck equation. 

Definit ion 2.1. A parameter-dependent Gaussian Hermitian ran- 
dom matrix H has all diagonal elements ujj ( j  = 1,..., N) and upper diago- 
nal elements ujk + ivjk independently distributed with probability density 
functions 

II-e-  l 
- 3 .  (o)x2/[ 1 _ e - 2 ~  I exp[ - (ujj - e ,jj j ] 
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and 

2 3, (0))2 - -3 . (0 )  --23 I 
z~ l1 - e -  2~1 exp[ - 2((ujk - e -  " j k ,  -- (Vjk -- e "jk ) 2)/11 -- e ] 

respectively. 
We note from Definition 2.1 that the joint distribution of the elements 

of H is proportional to 

e x p [ - T r ( H  - e-3H(~ 1 - e-231 ], (2.1) 

where H t~ is the N x N Hermitian matrix with diagonal elements u~ ~ and 
off diagonal elements -jk"t~ + ivtO)j,, and Tr denotes the trace. 

The joint distribution of the elements of H for a specific value of the 
parameter is obtained by averaging over the elements of H t~ For example, 
if H~ ~ is a random real symmetric matrix from the GOE, the distribution 
P(ujj; .r) of the diagonal elements ujj is given by 

e(ujs; r ) -  ~ ~/~ I1 -e -2~l  - o o  du e-U2/2e -tuss-e-~u)2/l'-r 

1 exp - u 2./ll + e - 231 (2.2a) 
~/zc I 1 + e-231 

while the distribution P(ujk + ivjk', T) of the off diagonal elements ujk + ivj, 
is given by 

P( Ujk q- iVjk ; Z) = 1 ~'zr 2 
I1 - e  -2~[ 

e-24/11 - e - 2 r l  

oo 
X dR e-U2e -2(ujJ-e-ru)2/ll - e-2rl 

I 
exp - 2v2k/[1 - e - 2 ~ l -  2u5~/! 1 + e-2~l 

(2.2b) 

Proposition 2.1. Let the eigenvalues of H ~~ have distribution 
f(x~~ x ~  )) and denote by F(x~ ,..., xN;  z)  the probability density function 
(p.d.f.) of the eigenvalues of H after averaging over f and the variables 
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associated with the eigenvectors of H. Then F satisfies the Fokker-Planck 
equation 

OF 
- - =  .~'F where 
0r j - - I  

with 

N 

W =  -- Z log IXj--xkl + ~_ E xff 
l < ~ j < k < ~ N  j = t  

subject to the initial condition 

F ( X l , . . . ,  X N ;  O)  = U ( x I , . . . ,  X N ) .  

Proof. This result follows by changing variables in the Fokker- 
Planck equation satisfied by (2.1) (see e.g. refs. 7, Appendix 5 and ref. 8). 

P r o p o s i t i o n  2.2. The Green function solution G ' =  G(x~ ~ .... , x~)[ 
x~ .... , XN; Z) of the Fokker-Planck equation in Proposition 2.1 is given by 

N 

G=eN2~ I-I X~ k) x~XJ tl--it e 
1 < ~ j < k < ~ N  ~ jO) ._ 

-('~-(x~~ (~ Xk" r)]j,k , ..... N 

(2.3a) 

where it is assumed xt >i . . .  >i X N and similarly xlt~ ~> ... >t x~ ), and where 

oo H,,(x) H , ( y )  _(,+1/2): 
g(x, y; z) = e -(':2 + y2)/2 ~ - - -  e 

,=o x/~2"n! 

- -  e v2/2 + x2/2 e - r/2 - - - -  e x p [ - - ( x - -  ye-~)2/ (1- -e-2~)]  (2.35) 
~ /n(1- -e  -2~) 

with H,(x )  denoting the Hermite polynomial of degree n. 

Proof. This follows since 

_ e W  ~f e - w= H -  N 2 

where 

W ~  m 
1 N 

L log IXk -- xj[ + -~ .~ x 2 and 
l < ~ j < k ~ N  j =  l 

N (~2 N 

- - j  - -  q - j  204 l 

(see e.g. ref. 9). 
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2.2. Genera l  Formulas  

The (dynamical) density-density correlation is defined in terms of the 
initial distribution f and the Green function G by 

,p~)((xo, ~o), (x~, r~)) 

_y x o, 
N 

• f, ax~',.., f d~,~,c(x~O,,..., ~'l~",..., x~,; ~o) 2 ~(x~l'--~a) 
1 = 1  

N 
x fldx~2)"" flMx(I~)G(x~I)'""X(2~)IX~2)'""X(2N"~"Cb--"Ca) Z ~(X~2'--Xb) 

!-'1 

-- dP(l)(Xa'~ "Ca) dP(l)(Xb; ~b) (2.4a) 

where 

~,,,,~x; ~) :- f ~x~O,... f ~x,~,i~x~O,,...,x~,) 
N 

• f, aX,l ... f, ~x~ c(x~O,,..., x~, i ~'1,..., x ~ ; ,  z ~(x~- x) 
t=l (2.4b) 

and I = ( - o o ,  oo). 
This can be computed by introducing a generalized partition function 

Z[a,b] 

:= f ax]~ f, a,.(~176 _ . .~ ,~ ,  ,...,x~)) 

1 f,~ ]la(x]l)) . . . f ldX ~ ,...,x~) x]l , .... , x--~., dx ) )a(x~ )) G(x~ O) [ ) X(IN )" "Ca) 

i f  f, , ,  , ,  , x--~., dx b(x]Z)).., dx~)b(x~ )) G(x~ ') x~)lx] z) x7  )" Z'b--r,,) 

(2.5) 

and using functional differentiation. Thus from the defining formula 

,~ foo 
Ja(x) -oo a(y) f (y)  dy= f(x)  (2.6) 
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and the normalization property of the Green function 

lI, f, . . . .  P .., XN,  N! dX'l dxN G(xl,. xNlx'~ ,..., ' " "c) = 1 (2.7) 

we see that 

dP~2)((Xa, Ta), (Xb, "r 
5 2 

(Sa(xa) (~b(Xb) 
logZ[a,b] l~=b=l  (2.8) 

Our task is therefore to compute (2.5) and (2.8) with G given by (2.3) and 

1 N --x2/2 
f(x]O),.. . ,x~')=-C'-utI-Ie I-I IXk--X,I (2.9) 

i = l<~j<k<~N 

which is the eigenvalue p.d.f, of the GOE (see e.g. ref 7). 
To put this task in a more general setting, let Wz(X) be an arbitrary 

weight function with support in L let {pj(x)}j=o.~ .... denote the poly- 
nomials orthonormal with respect to the weight function Wz(X). We see 
that the Green function (2.3) can then be written 

a(x]~ x~)IXl ,..., xN; z) 

N 

]-I 
j = l  

x k - x j  det[g(xJO),xk; Z)]j.k=l ..... U -W" I(Xs---2) I-I X~~ X}0) (2.10a) w,(xJ ~ , 

where 

O(3 
g(x ~~ x; z )=  wl(x (~ Wl(X ) ~ p j ( x  (0)) p j ( x )  e-VJ ~ 

j=O 
(2.10b) 

with 

Wl(X ) = (W2(X))  1/2 = e-~/2, 
1 ) 1/2 

pj(x)  = , ~  2JJ "! 
Hi(x),  vj= 1 + 1/2 

(2.11) 

and the initial p.d.f, can be written, 

f ( X I , ' . . ,  XN)----~IIN WI(Xj)  
j= 

I-[ lxk-xjl (2.12) 
l <~j<k<<.N 
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To calculate the corresponding density-density correlation define 

H I ( X I ,  x2;  , [ . ) := i f I  +1 fi  dy2 sgn(yz- Yl) g(Y,, XI "~ "l~) g(Yz, x2; z) (2.13) 

and introduce the skew-symmetric inner product 

< f i g >  ]~)"= ;, dy, w,(yl) fi dy2 w,(y2) H,(y,, Y2; r) f(Yt) g(Y2) (2.14) 

The polynomials { U,,(x; " L ' ) } n _ O ,  1 .... are said to be skew orthogonal with 
respect to the inner product (2.14) if 

< U2m ( �9 ; 72) ! U2n + 1(" ; ~') > (r) ( = __ < U2 n + !( '" T) I U2m( "" ~')> (r)'~ _. Um (~m S 9 ~ S / , n  

(2.15a) 

and' 

< U2m("~ r) l U~(-; ~r>~ ~-- < U2m+ 1(. ; v) l U~.+,(.; r)>~)-- 0 (2.15b) 

(the quantity Um is referred to as the normalization and (~m,n denotes the 
Kronecker delta). It will further be assumed that the polynomials are 
monic i.e. the coefficient of the highest power is unity. The polynomials for 
general T can be constructed from the polynomials with r = 0 .  t6~ Thus, 
given 

U,,(x; O)= ~ a~pk(x) (2.16a) 
k---O 

from the orthonormality property of {p,(x)} k=o. 1 .... it is straightforward to 
check that by defining 

U,,(x; r )"= ~ al, pk(x) e vk~ (2.16b) 
�9 k =0 

we have 

< u~(.; v)l u.(.; v)>~ = < u~(.; 0)1 u.(.;  0)> ~~ (2.16c) 

and thus the polynomials (2.15b) are skew orthogonal with respect to the 
inner product (2.14). 
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In the particular case of interest, when the initial state is (2.9) which 
is the eigenvalue p.d.f for the GOE, we know (see e.g. ref. 10) that at � 9  

U 2 m ( x ;  0 )  - -  2-zmH2m(X), 

d --x2/2Uzm(X; 0)) U2m+ l(x; 0 ) =  --eX2/2 ~x (e 

= 2 - 2 m -  I H 2 m +  l ( X ) -  m 2  - 2 m +  IH2m_ l (X)  

(2.17a) 

with 

u, = 2-2" x/~ (2n)! (2.17b) 

Consequently, from (2.15b). and (2.11) we have 

U2m(X; I:) = 2-2me ~2m+ I/2)rH2,n(X ) (2.17c) 

and 

U2m+ l ( X ;  ~.) __ 2-2,,-,el2m + 3/2)rH2m+ i (x)  __ m2-2m + ,elZ,,,-,/2)~H2,,,_ ,(x) 

(2.17d) 

and the normalization for general r is still given by (2.17b). 
Using the skew orthogonal polynomials, the formulas (2.5) and (2.8) 

can be computed. 

Propos i t i on  2.3. For N even we have 

2N/2 
__ ~ "] 1/2 Z[a, b] C, udet[HtkJj.k=,__ ..... u 

where 

Hjk=�89 f dx ftd.~c'Aj(x) A~(x') sgn(x-x')  

with 

Aj(x) = fI dy a(y) g(x, y; r~) Bj(y) 

Bj(y) = ;i dv w(v) b(v) g(v, y; Vb- V,) Uj_ ,(v; Vb) 
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This gives 

T dp(2)((X., Za), Xb, %)) 

__N/~.--I Kxj+l,2j+2((Xa ' Z.a) ' (Xb, "~b)) 
/ _ ,  
j=O Uj 

-- + l ,2 j  ' + 2 ( x a '  "t:a) I2j" + l ,2y+ z (Xb ,  "Cb) 

j , j , = o  ujuj, 

I2j+ 2,2j' + 2(Xa, Ta) J2j' + 1,2j+ l(Xb, ~b) 
2ujuj, 

I 2 y +  1, 2j' + l(Xa, "Ca) J2j'+ 2,2j+ 2(Xb, ~'t,)~ 
2ujuj, / 

where 

~5 
6, k(Xa, "Ca)--l~8(Xa ) Hjkla=b= l = Wl(Xa) Uj_ l(Xa; "Ca) 

X fl dx g(X, Xa; "Ca) (I) k _ l(X) --  ( j  r k )  

Jj, ~(x~, ~)  = ~  8b(xb) Hjk],,=b= l = Ij.k(Xb, %) 

and 

Kj,~((x~ ~o), (x~, ~))  

~Sa(x,,) cSb(Xb) Hj.k ]a--b- l 

1 I, ='2 WI(Xa) Wl(Xb) Uj-l(Xa'~ Ta) Uk--l(Xb'~ "fb) dx 

x fl dx'g(x, x,,; Va) g(x', Xb; %) sgn(x -- x ' )  -- ( j  ~ k) 

~- Wl(Xa) Wl(Xb) g(Xa, Xb'~ "~b- "Ca) U]_ l(Xb; "Cb) 

x fl dxg(x, Xa; Z) Ok_ l (X)  - -  ( J  ~ k )  
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with 

~bk(x) "= �89 Iz dy wl(y) s g n ( x -  y) Uk(Y; O) 

Proof. (Sketch) The formula for Z[ a, b] is obtained from the general 
formula (2.5) by using the method of integration over alternate variables, tT) 

r follows from the formula for Z[ a, b ] by apply- while the formula for dP(2) 
ing (2.8) and noting that 

Bj(Y)Ib=, = w~(y) Uj_I(y; "c,,) 

By the skew orthogonality property of { Uj(x; r)}j=o, i . . . .  this implies that 
for a = b = l  

H 2 m + l  2n+ l  ~ ~ H 2 n + l  2m+ 1 ~-Un (~m,n, H 2 m  2n - -  H 2 m  + 1 2n + 1 - -  0 

which makes the computation of the determinant straightforward. 
Consider the GOE initial state (2.9). The skew orthogonal poly- 

nomials at T=0  are given by (2.17a), so from the definition of r in 
Proposition 2.3 we see that 

r = 2 -2* H2k(Y) e -y:/2 dy tP2k + 1(x)  = - - 2 - 2 k e - X 2 / 2 H 2 k ( X )  (2.18) 

All the quantities in Proposition 2.3 are therefore known explicitly. Our 
immediate task is therefore to compute the scaled N-~ oo limit, where the 
scaling required is tS) 

x~-. lrpx/~/2N, v~-~ (zrp) 2 T/2N (2.19) 

In the limit (2.19) the Fokker-Planck equation in Proposition 2.1 
approaches the Fokker-Planck equation describing transitions to the 
circular ensemble with unitary symmetry (see Section 4), so it is expected 
that the correlations will agree with those of the circular ensemble descrip- 
tion in the thermodynamic limit. We remark that Proposition 2.3 requires 
modification for N odd. However, since we are specifically interested in the 
N ~ oo limit and there is no reason to expect that the parity of N will affect 
the limit, it suffices to consider the N even case. (This is not true of the 
anti-Hermitian to Hermitian transition considered in Section 3, as the func- 
tional form of the eigenvalue p.d.f, of a random anti-symmetric matrix 
depends on the parity of N.) 

822/89/1-2-6 
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2.3. The Scaled N - *  oo Limit  

To compute the scaled N ~ oo limit of the sums in Proposition 2.3 we 
first compute the asymptotic form of the summands. This approach is 
justified by Theorem 3.1 of ref. 11. To compute the asymptotic form of the 
summands we use the large-n asymptotic formula 

F(n/2 + 1) 
F(n+ 1) 

e - x~/2H,,(x) ~ cos( x/2n + 1 x - nit~2 ) 

in the formulas (2.3), (2.17c) and (2.18) for g(x, y; z), U,(x; z) and ~k(X) 
respectively. This gives 

Wl(X) U2n+~(x;z) ( -1 ) "  ( N )  '/a ( t )  '/4 ,~ etr(nP)2/22 sin(~/~ Itpx) (2.20a) 
U 1/2 It 1/4 

WI(X)  U2n(X'~ T) ,~ ( - -  l )n ( ~ )  l/4 etr(np)2/2 
1/2 1/4 (itt) 1/4 COS(x/~ ItflX) (2.20b) 

U n It 

~2n+l(X) ( - - 1 ) n ( ~ ) l / 4 c o s ( ~ / ~ i t P  x )  
1/2 '~' 1/4 (itt) 1/4 (2.20c) 

U n It 

~2n(X) ( - - 1 ) n  { 2 ~  1/4 Itp 1 sin(x/~ Itpx ) 
1/2 ~ 1/4 \ ~ J  (2.20d) 

U n It X/2/~ (it/) TM ~ ' i t p  

1 ( N ) '/2 
g ( x, y ; "c ) ,~ -n- ~ (itpl2 z e x p [ - - ( x -  y)2/2"c] 

(2N) 1/2 foo p du e -2(np)2u2r 

Itp - ~  
cos 2itp(x -- y) u (2.20e) 

where t := 2n/N. 
Consequently, from the formulas in Proposition 2.3 

J2j' +2. 2j+ ,(x; z) 

-- (--1)Y+J' ~ (t"/4et'~('w)'/2 s i n ( ~  

et*(ltP)2/2 e - t' ,( np )2/2 
+ t'/4 t, ,/4 COS(~'7 ~px) COS(~j~ Itpx) ) 

e-tr(np)2/2 

t3/4 sin(v~ Itpx) 

(2.21a) 
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Jzj+ l, 2j' + ~(x; t) 
r d12 

( -- 1 )J+J' 2 f e'r(=p)z/2e-t'r(=p)2/2 

N tl/4t'3/4 sin(x/~ npx) 

x cos(v/~ rcpx) -- ( t *--* t ' ) )  

J2j,+2,2j,+2(x; T) 
d / 2 d / 2  

( -  1)J+J' (err(nP)Z/2e-tr(nP)z/2 t '1/4 sin(x/~ npx)  

x COS(x//t - zrpx) - - ( t  *-+ t ' ) )  

K2j+l,2.i+2((Xa, "Ca), (Xb, Tb) 

'~-~ e tlr'+rb)(np)2/2 sin ~/~ ~ p ( x b - x ~ )  du 
~ 0 0  

e - 2( r a + rb)(rcpu)2 
x sin 21rup(xb- x . )  

U 

2 ~zpx/7(x  b + -~ e '(~h- ra)(~tP)2/2 COS -- Xa) 

f 
o o  

X du e - 2 ( r . -  ~b)trW")2 COS 2rcup(xb - x,,) 
- -  0 0  

81 

(2.21b) 

(2.21c) 

(2.21d) 

where use has been made of the integration formula in (2.20e) and the 
further integration formulas 

(2nr) z/2 -oo dx e -(x-xb)2/2r s g n ( x - x ' )  

o o  1 due  - 2r( r t p u ) 2  

- -  sin 2rcup( x b - x' ) (2.22a) 
~ - o o  U 
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1 S oo 
(2nr) 1/2 -oo dx e -(x-x")2/2r sin 2nup(xb--X) = e  -2r(nup)z sin 27tup(b--Xa)  

(2.22b) 

With the asymptotic formulas (2.21) we see that the sums in Proposi- 
tion 2.3 are Riemann approximations to definite integrals. Straightforward 
simplification gives 

lim 
N---* oo 

2 

�9 ,na ) t ( z tpx , , /~ ,  (z~p) 2 r./2N), (rtpxb/v/2-N, (z~p) 2 Zb/2N)) d r ' ( 2 )  

= t o ) ,  (2.23) 

z~c) is given by (1 1). Thus, as expected, the scaled N ~ oo limit where dP (21 
of dP[2) for the G O E - ,  GUE transition agrees with the thermodynamic 

r for the COE ~ CUE transition. limit of alP(2) 
To illustrate and to provide a realization of (2.23), we have performed 

z~o)t npx,/x/~-~, 0), ) for an empirical computation of alP(2) ~( ( n p b / ~ ,  Vb) 
the eigenvalues of 10,000 pairs of 13 x 13 computer generated matrices (the 
value N = 13 is large enough to probe the N ~ oo behavior in the middle 
of the spectrum). The first member of each pair is a random matrix from 
the GOE, with elements specified according to (2.2) with z = 0. The second 
member is constructed from the first according to Definition 2.1 with a 
certain value of �9 =Vb. The eigenvalues of both matrices are calculated, 
multiplied by the scale n/(2N-(~x)2) ~/2 (the reciprocal of the density at 
point x) so that the mean spacing is unity, and labelled - 6  up to 6 sequen- 
tially along the real axis. The distance from the middle eigenvalue (label 0) 
of the first matrix to each of the eigenvalues of the second matrix with 
labels - 2  .... ,-2 are recorded and used to compute the probability density 
functions p(j; X) for the event that the distance X is in the interval 
[ X, X+ dx] (dx is taken as 0.1). 

To relate this to the density--density correlation suppose the eigenvalue 
with label 0 of the first matrix occurs in some interval dx of the origin. 
Then 

dP~2)((O, 0), (X, %))= --1 + 
( N - -  l )/2 

P(j; X) (2.24/ 
-- ( N - -  1 )/2 
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Fig. 1. Comparison between aP~2~((O, O), (X, r)), r=0.05, as calculated empirically from 
10,000 computer generated parameter-dependent random matrices of dimension 13 x 13 for 
the GOE--, GUE transition, and the theoretical prediction for the scaled limit of the same 
quantity. 

where P(j; X) denotes the probability density function for the event that 
the scaled eigenvalue with label j of the second matrix occurs within the 
interval [ X, X+ dx]. In (2.24) we make the approximation 

P ( - j ;  X) + P(j; X) ,~ �89 X) + p(j; X) ) (2.25) 

which is exact in the N ~ oo limit when there is translation invariance, to 
compute an empirical approximation to dP~2~. The result of this computa- 
tion for r = 0.05 is given as a bar graph in Fig. 1 and compared with the 
theoretical curve as given by (1.1), with p = 1, r ,  = 0 and r b = 2Nr/rc 2 (the 
latter equation follows from (2.19)). 

3. THE GAUSSIAN ANTI -SYMMETRIC HERMITIAN TO 
GUE TRANSITION 

3.1. Gaussian Anti-symmetric Hermitian Random Matrices 

Gaussian anti-symmetric Hermitian random matrices are zero along 
the diagonal, and have zero real part for the off diagonal elements. The 
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imaginary part of the off diagonal elements ,t0)tl k) are ~jk w < distributed 
according to the Gaussian probability density 

~ exp[ --(.(~ 2 ~jk' ] (3.1) 

Averaging over this distribution in Definition 2.1 gives that the p.d.f, of the 
elements of H for a specific value of the parameter r in the Gaussian anti- 
symmetric Hermitian to GUE transition is given by (c.f. (2.2)) 

II-e- 'l 
exp[ -u~./ll - e-2"l ] (3.2a) 

and 

2 
m 

~ / l i _ e _ 4 ,  I exp[--2UZk/ll--e 2"l--2V]k/(1 +e 2~)3 (3.2b) 

for the diagonal and off diagonal elements respectively. The eigenvalue dis- 
tribution of Gaussian anti-symmetric Hermitian random matrices depends 
on the parity of N. For both N even and N odd the eigenvalues come in 
pairs +_Xl, .... +--X~N/2], but for N odd there is also an eigenvalue at x = 0 .  
The independent eigenvalues x~,..., XEN/2 ] have p.d.f. 

1 [ N/2] 2 
~ e-~JXN(Xj ) d(Xl,..., x~N/21)= C'~ j= I-[ ( x k -  xJ) 2 (3.3) 

1 < ~ j < k < ~ [ N / 2 ]  

where X N ( X j ) : =  1 for N even and X N ( X j ) =  X 2 for N odd. Thus, unlike the 
GOE ~ GUE transition, the correlations describing the Gaussian anti- 
symmetric Hermitian to GUE transition will depend on the parity of N, so 
the N even and N odd cases must be considered separately. 

3.2. Equal Parameter Distribution Function 

In general, for a given initial eigenvalue p.d.f, f(x~~ x~)), the eigen- 
value p.d.f, at parameter value r, p(Xl,..., XN', 1:) say, is given in terms of the 
Green function by 

p(xl ,..., XN; Z) 

lf o L dx ). a,.~o)rt~.~o) x~ )) G(x]~ XN; r) (3.4) 
--'~ " " "*'~" N J k "~ 1 ~ " " ~ . ~ " " ~ 
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The equal parameter distribution functions pn(Xl,..., Xn, "r:) are defined in 
terms of p(xl ,..., XN; ~) by 

p(n)(Xl ,..., Xn" ~ "C) "= N ( N -  1)... ( N -  n + 1) 

x f lNXn+, ' ' '~IdXNp(X, ," . ,XN;T)  (3.5) 

It is our task in this section to calculate pl,) when the initial conditions are 
given by 

I N / 2 ]  

f ( x !  .... ' XN)--'d(xI'""X[N/2]) R (~(Xj--XN+I--j) 2N(XIN+I)/2) 
j = l  

(3.6) 

where 2N(X)=  1 for N even and ~.N(X)-"~(X) for N odd (5(x) denotes the 
Dirac delta function). The first step is to write (3.4) as a Pfaffian. 

Proposition 3.1. Let the initial eigenvalue p.d.f, be given by (3.6) 
and suppose G is given by (2.3). Then for N even the expression (3.4) can 
be written as 

p(xt ,..., XN; T) 

1 N 
- ~ e E ~  1--[ w,(xj) I-[ 

GrIN j ----I l <~j<k<~N 
( x k - x j )  Pf[H,,(xj, xk; r)]j;k= ! ..... N 

where 

1 I ;  --du (g(u, x', r) g(-u,  y; r ) -  g(u, y; r) g( -u ,  x; r)) Ha(xl '  x2; "c) "=-2 u 

and E0 = N 2. This formula remains valid for N odd, provided the Pfaffian 
is replaced by 

2 Pf//[  Ha(x], xk)]j, k =, ..... N 

\ - - [ r ( X k ;  T ) ] k = l  ..... N 

[F(xj; r ) ] j : ,  ..... N'~ 
0 / 

where 

F(x; r) := �89 g(O, x; r) 
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Proof. In the limits XN+ l_j  ~ Xj ( j =  1,..., IN/2]), X(N+ 1)/2 ==1' 0 

(N odd) the Green function (2.3) multiplied by the distribution (3.3) reads 

,.(o) ) G(x O) x )lx, [ N/2 ] ) " "  ) ' " '  

e N 2 r  N 

= H - I-I tu/21 2xj Wl(Xj) I-I (xk xj) det AN 
j - - I  j - -  l<~j<k<<.N 

where Wl(X)--e -x2/2 and AN is given by 

[ g(x  ~ x,; r) ] 
g(--xJ .~ Xk; r) j=k=ll ..... ..... [N/2]N 

and 
I g(x~ ~ xi,; z) 1 

g(--x (~ Xk" r) j 

g(0, xk; ~:) j =  1 ..... I N / 2 ]  
k = l  ..... N 

for N even and N odd respectively. With this structure the problem of 
(0) is of a known type (ref. 7, Appendix A.18), integrating over x~~ XtN/21 

and the Pfaffian structure results. 
The next step is to introduce an appropriate skew symmetric inner 

product: 

(fl g)(~)"= fI dY, wI(Yl) ; tdyawi(Y2)H.(yl ,  YE; "r)f(Yl)g(Yz) (3.7) 

(c.f. (2.14)). Note that in the limit r ~ 0 ,  since g(x, y, r ) ~  O(x-y)  this 
reduces to 

l dx 
= --e-X~(f(x) g(--x)-- f (--x)  g(x)) ( f i g )  <o) 2 x (3.8) 

From the theory of Section 2.1 we know that the general r-dependent skew 
orthogonal polynomials can be written down once the v = 0 skew orthogonal 
polynomials are known in terms of the Hermite polynomials. 

Now, from the orthogonality of the Hermite polynomials, it is easy to 
check that 

U~(x; O) = Hzk(X), 

U2k + l(x; 0) -- 2XHzk(X ) -- Hzk + l ( X )  -[- 4kH2k_ l(x) 
(3.9) 

with corresponding normalization 

u, = --2 2" ~/~ (2n)! (3.10) 
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are skew orthogonal with respect to the �9 = 0 inner product (3.8). Thus the 
polynomials 

U 2 k ( X ;  T)  - -  e (2k + 1/2)~H2k(x) 

U2k + l(X; z') = e {2k + 3/2)~H2k + l(x) + 4ke {2k- 1/2)rH2k_ l(X) 

= - (  1 - e  -2r) e t2n+ 3/2)reX2/(l--e -2r) 

d _x2/(1 e_2r) 
X~x(e  - HE,,(x)) 

(3.1 la) 

(3.1 lb) 

where the last equality can be verified from the properties of the Hermite 
polynomials, 

d 
-~x H,,(x) = 2nil,,_ l(X) and 2xHj(x) = Hi+ l(X) + 2jHj_ ,(x) (3.12) 

are skew orthogonal with respect to (3.8). 
The structure of p in Proposition 3.1 can be combined with the skew 

orthogonal property and Dyson's theory of quaternion determinants t~~ to 
give a closed form expression for p(,). Let us first recall that a quaternion 
determinant, denoted Tdet, is defined analogously to an ordinary determi- 
nant, as a signed sum over cycles, where the elements in the cycle are 
quaternions (which can be represented as 2 x 2 matrices). When the corre- 
sponding matrix is self dual, which means that the elements ajk and akj in 
positions jk  and kj respectively are such that if 

a j -k=( :  bd) then a k J = (  d-c a b)  

the quaternion determinant is related to the ordinary determinant by 

Tdet A = (det A) 1/2 (3.13) 

On the r.h.s, the matrix A is that formed when the quaternion elements are 
regarded as 2 x 2 blocks to form a matrix with scalar elements. 

The distribution function p~.) can be written in terms of a quaternion 
determinant according to the following results. ~6) 

Proposi t ion  3.2. Suppose N is even. Define the skew-symmetric 
inner product by (3.7), let { U,,(x, 1:)}.=o. ~ .... be a corresponding set of skew 
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orthogonal polynomials with normalization u,, (U,,(x; ~) and u. are given 
explicitly by (3.11 ) and (3.10) respectively) and set 

f 
oo 

V,,(y; r ) : =  dy' wl(y') Ha(y, y';  "r) U,,(y'; "r) 
--O0 

We have 

seven(xj, Xk; T) 
p(,,)(x~ ,..., x . ;  r) = Tdet Deven(.xj, Xk; Z') 

Ieven(xj, Xk; "C) ] 

Se"~ .9; r) j,k= ~ ..... . 

where 

N/2--1 wl(y) 
s~176 ~, y; ~)= E 

k----O Uk 
~ (V2k(x; v) U2k+ l(Y; z)--  l/'2k+ l(X; T) U2k(Y; "r)) 

N/2--1 Wl(X) w , ( y )  
D=~176 y; ~)= 

k = 0  Uk 
( U2k(X; ~) U2k + I(Y; "t') 

- - U 2 k  + I ( X ;  T )  U2k(Y; r ) )  

N/2--1 1 (X; V) V2k(Y; v) /even(x, y; r ) =  ~ - - ( g 2 k + l  
k-- 0 Uk 

-- V2k(X; I:) V2k + I(Y, ~'))--HI(X, Y; ~) 

Proposition 3.3. Suppose N is odd and let { U,,(x, ~)}.=o,~ .... , 
{ V.(x, ~)}. =o.~ .... and { u,,}. =o ..... {N-t)/Z-I be as in Proposition 3.2 but 
redefine U{N_ 1)/2 by 

U ( N _  1 )/2 "~--- a(N_ ~ )/2 where f 
oo 

av := dx Wl(X) F(x) Up(x; r,) 
--00 

Also introduce the quantities 

O.(x; ~)= U.(x; r ) - ~  an 
a(N-- l )/2 

UN_t(X;r) (n = 0,..., N - -  2) 

UN__I(X'~T)=UN__I(X'~T) 

f 
(X3 

Vn(X,-c) = dy wl(y ) Ha(x, y; "t) gr (y; "c) 
-- r 

(n = 0,..., N -  1) 
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Then we have 

s~ y; Z) 
p{n)(Xl,..., Xn; Z')= Tdet DOaa(x ' Y; r) 

I~ y; r) ] 
s~ X; "C') J j. k= 1 ..... n 

where 

(N--  1)/2-- 1 
s~  y; r ) =  Z w'(Y---~)(I"2k(x; r) U2k + ,(Y; r) 

k = 0  Uk 

1 
- F'Ek + ,(x; r) ~rz~(y; r)) + ~  F(x; r) UN_ t(Y; r) 

U( N -- 1 )/2 

N/2 -- t 
D~ y; r ) =  ~ w,(x) wt(y)  (Uz,(X; r) U2k+ ,(Y; r) 

k = 0 Uk 

- -  U2k + l (X ;  ~') U2k(Y; r)) 
N/2- ~ 1 

I~'da(x, y; r ) -  ~ - -  (~r2k + l (X ;  l") P'2k(Y; r) 
k = 0  Uk 

--  V2k(X;  72) V2k + l ( Y ;  l " ) ) -  H , ( x ,  y; r )  

1 
+ ~  ( ~'N-l(X; r) F(y; r ) -  F(x; r) ~'N-I(Y; r)) 

g/(N-- 1 )/2 

We stress that these formulas are general in the sense that they still 
apply whenever g is of the form (2.10b) (of course the skew orthogonal 
polynomials are dependent on w,(x)). 

In the case of specific interest, w t ( x ) = e  -''-/2, from the explicit for- 
mulas (2.17c) and (2.17d) for U.(x; r) and (2.3a) for g(x, y; r), use of the 
orthogonality property of the Hermite polynomials in the definition of V. 
in Proposition 3.3 gives 

Vzn + l ( X ;  r )  - e - X 2 / 2 H 2 n ( X )  e - ( 2 ' '  + l/2) r (3.14a) 

and 

V2n(X; r)=e_X2/2 (2n)! )n ~ ( - 1 )  k k! 
2n' ( - 1  Z i2-k+ ii '  

�9 k ~ n  * 

e - ( 2 k  + 3 / 2 ) r H 2  k + l (X )  

e - ( 2 n -  1/2) r 

1 - -  e 2r 
e_X2/2eX2/ij _e2~) e -"'/~1 -&)H2n(U ) dtt (3.14b) 

(the second equality can be verified by multiplying both sides by 
eX2/2e -x2at-e2,) and then differentiating with respect to x; use of the 
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formulas in (3.12) then shows that both sides are equal), while for an as 
defined in Proposition 3.3 and F as defined in Proposition 3.1 we obtain 

a n - - O  , n odd an=Hn(O)=(-1)n/Znl/(n/2)!, neven (3.14c) 

All terms in Propositions 3.2 and 3.3 are therefore known explicitly, and 
thus the equal parameter distribution for the Gaussian anti-symmetric 
Hermitian to GUE transition is thereby given. 

3.3. Comparison with the Results of Mehta and Pandey 

Mehta and Pandey ~1) have given quaternion determinant expressions 
for the equal parameter distributions calculated in the above section. 
However the expressions of ref. 1 were not derived using the general for- 
mulas of Propositions 3.2 and 3.3, and cannot immediately be identified 
with our results. However, minor manipulation show that the two results 
do hadeed agree, as we will now demonstrate. 

Consitter for example the expression for the elements seven(x, y; ~) in 
Proposition 3.2 given by Mehta and Pandey: 

N ~ I  -- (x 2 + y2)/2 
seven(Me)(X, y; Z)= e 

k=o x/~2kk! 
Hk(x) Hk(Y) 

e - (x2 + Y2)/2 
! 

V ~  2 N- '(N/2 - 1)! 
( -- 1 )N/2 e~N-1/2)*HN_ I(Y) 

o~ ( _ l ) k k l  
,= 2 (2k + 1)! e-~2k + 3/2)~H2,+ I(Y) (3.15) 

(in the final term we have written a sum whereas in ref. 1 it is given as an 
integral; that the two expressions are identical follows by use of the 
formulas (3.14b). On the other hand, from Proposition 3.2, (3.11) and 
(3.13) our expression is 

N--  1 e - ( X 2  + Y2)/2 
s*ven(x, y; z)= ~ H~,(x) H~,(y) 

k=O ~ 2kk! 
k even 

o~ (__l)n 
+e-(X2+ y2)/2 E 1/222n+lnt (e(2n+3/2) rH2n+ I(y) 

n= N/2 ~ 

+4net2n-1/2) rH2n_ I(Y)) 
oo ( _ l ) k k !  

, e-~2~ + 3/2)~HEk + ~(x) 
(2k + 1 )~ 

(3.16) 
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We observe that the double summation has the structure 

N/2-- I oo 
E (r b2k+l 

n=0 k=n 

with ~ ' =  0, which is equal to 

N/2-- 1 cx3 
E OC2',+lb2n+l-l-OtN-I E b2k+l 

n =0 k =N/2 

The agreement between (3.15) and (3.16) now follows. 
The agreement between the other elements in the quaternion determi- 

nant of Proposition 3.2 (and the elements in the quaternion determinant of 
Proposition 3.3) as calculated from the formulas of this paper and those 
given by Mehta and Pandey can be demonstrated by similar straight- 
forward manipulation. 

3.4. The Scaled N - ~  oo L imi t  for  N Even 

To compute the scaled N ~ oo limit (N even) of p,,, we found it con- 
venient to use the expression (3.15) for S~"e"(x, y; r) and the expressions 
for I eve" and D even as given in Proposition 3.2. As in Section 2.3, our 
method is to compute the asymptotic behavior of the summands, which 
requires the asymptotics of U,(x; r) and V,,(x; r). From the asymptotic for- 
mula for H,,(x) noted below (2.19) and the formulas (3.11) and (3.13) we 
find that in the scaled limit (2.20), with n/N := t fixed 

WI(X) U2n(X; ~ ( - -  1 )n ( 2 )  l/4 e(rtp)2tr/2 
Un (Tg2t)i/4 COS npx ~ (3.17a) 

WI(X) U z n + i ( x , z )  4 (N)  !/4 d 
/,/1/2 ~ ( -  1)" Nrrl;2 tl/4-- dt 

x (sin rcpx ~/~ e ~'w)''~/z) 

WI(X) U nV'2 n ( X ; ~ ' ) 1 / 2  "w i i ~,l~-2 n) -('/ - -1 )  " + l ( 2 ) ~ / e f ~ ds 
sin ~zp x/~ 

,5 
e - (nP)2 st~2 

WI(X ) V2n+l(X" ~ "c) ...~ (__ 1) n ( 2 )  1/4 e-~,w)'-t~/2 
1/2 (~2t) 1/4 COS ~PX N/~ U n 

(3.17b) 

(3.17c) 

(3.17d) 
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For the quantity /even, also required is the asymptotic behavior of 
Ha(x, y; 3). Now use of the asymptotic formula (2.20e) in the definition of 
Ha (recall Proposition 3.1) and interchange of the order of integrations 
allows the integral over u to be carried out. This gives 

Ha(x, y; z) N fo~ f~o ~ - -  dVl dr2 e -2~"p)2~+~) 

x sgn(vl + v2)(sin 2rc131px cos 2~zv2py--(x ~ y)) (3.18a) 

which after the change of variables u~ = v~ + 132, u 2 "-131- 132 reduces to 

Ha(x, y; z).~ ~16N dt e -4(np)2rt2 

7[ 
cos 2~zp(x + y) t 

• ds e -4(np)2rs2 sin 2zcp(x- y) s (3.18b) 

Substituting the asymptotic formulas (3.17) and (3.18b) in the expres- 
sion (3.15) for S even and the expressions for D even and I even in Proposi- 
tion 3.2, we see that to leading order the sums become Riemann integrals. 
Explicitly, after simplification we find 

seven(x, y; ~:),~ (2N)'/----~z ~even(x, y; Z) (3.19a) 
top 

1 /)even( 
DeVe"(x, y; 3)~ -2rip x, y; z) (3.19b) 

Ieven(x, y; r) '~  --~4N/even(x, Y; 3) (3.19C) 
rcp 

where 

sin zcp( y - x) up)23/2 $ even(x, y; r) = p rrp(y -- x) + 2e( sin ~zpy 

) X e -2(np)2rs2 sin 2rcspx ds 
/2 

/~even(x, y; r) = p (4zcp(y -- x) "ofl/2 e4(np)2t2z 

+ 2e (zcp)2 r sin l t p (y -  x))  

(3.20a) 

cos 2~zp(x + y) t dt 

(3.20b) 
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(f0 ''2 leven(x, y ;  r ) =  p dt e -2(np)zt2r cos 2~rpyt 

fl ~ 
x dse --2(np)2s2r sin 21rspx- (x ~ y) ) 

+4p dUl e -4(np)Eu~r sin 2rcpul(x- y) 

X du2 e -4(zip)2 u~r c o s  2rcpu 2(X ~- y) 

and consequently 

lirno~ ~ - - ~ /  p.(rcpxl (rcp r/2N) 

= Tdet [ ~'~even(xj' xk; r) 
/~even(x j ,  Xk ; "r 

fCvCn(xj, Xk; r) ] 
~even/ ' .  . . ,., ~xk, xj, r) j.k=l ...... , 
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(3.20c) 

(3.21) 

3.5. The Scaled N-~  oo Limit  for N Odd 

Comparison of Propositions 3.2 and 3.3 shows the quantities S ~ etc. 
to be closely related to S even etc.. This allows use to be made of the results 
of the previous section in calculating the asymptotics of the sums in 
Proposition 3.3 for N odd. 

For example the sum defining D ~ in Proposition 3.3 can be written 

D ~  y ,  " t ' ) : =  
(N-- 1) /2-  l 

w,(x) wt(y) (~rzk(X; z)OZk+l(y ;z)_(X( . . )y) )  
k =0 Uk 

(N-- 1)/2 -- I Wl(X) w,(y) 

k- -0  Uk 
(U21,(x; z) U2k+ l(Y; r ) -  (x,--~ y)) 

(N-- 1) /2-  1 S" w,(x) w,(y) 
Z.,a 

k=O Uk 

] x U2/, + I(Y; z) U N_ l(X; T) -- (X ~ y) 
a(N-- 1 )/2 

(3.22) 

The first sum of the second equality is essentially D even (the upper terminals 
are slightly different, but this makes no difference to the scaled N ~  oo 
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limit), and using (2.17b), (3.14c) and (3.17) the leading asymptotics of the 
final term is readily computed. Combining the results we find 

1 
D~ y; z),~ - - ~ / ) ~  y; z) (3.23a) 

2zcp 

where 

/)~ y; z) =p (4zrp(y-- x) fl/2 e4(np)2t2r 
"0 

- 2e t~p):~ sin ~rp(y- x ) )  

cos 2zcp(x + y) t dt 

(3.23b) 

Proceeding similarly, we also find 

S~ y, z) (2N) !/2 �9 ~ ~  ~~ y; r) (3.24a) 
zrp 

4N I~ y; Z)~ - -~/ '~  y; Z) (3.25a) 
rrp 

where 

(s in  r~p(y - x) 
~~ y; z ) = p  \ ~-~_ x) + 2e t ~p)2 r/2 COS npy 

I ) X (IS e -2(rtp)2rs2 COS 2nspx 
I/2 

[~ y; ~)=p dt e -2(rcp)2t2r cos 2rcpyt 

) • ds e -2(np)2s2r sin 2 n s p x - ( x  ~ y) 

+ p dt e -2(rtp)2t2r 

/2 
cos 2zrpyt 

x ds e - 2(np)2 s2r sin 2rcspx - (x ~-+ y) 
�9 1/2 

(3.24b) 

+ 4p f ;  du I e -4( r tp )2 u 2 r sin 2zcpu l(x - y) 

X d u  2 e -4(=p)2u2* cos 2~zPU2(X + y) (3.25b) 
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and consequently (3.21) applies for the limiting value of p,, with ~,~even etc. 
replaced by ~oaa etc. 

As with the density-density correlation of Section 2.3, it is possible to 
empirically calculate the one and two point equal-parameter distributions 
of this section using data from computer generated Gaussian random 
matrices. For definiteness suppose N is odd. Now in the scaled N ~  oo 
limit, (3.21) modified so that the superscripts "even" are replaced by "odd" 
and the formula (3.13) for the computation of the quaternion determinant 
gives 

p(l)(X; ~')'-~~ X; 1:) (3.26a) 

and 

p(2)(x, y; r) = ~~ X; 3) Soda(y, y; ~:) _ (~odd(x ' y; r) Soda(y, x; ~:) 

--/)~ y; r) /~ y; V)) (3.26b) 

where ~odd is given by (3.24b), D ~ is given by (3.23b) and /odd is given 
by (3.25b). 

On the other hand, these distributions are the scaled limit of the 
corresponding distributions for parameter-dependent Gaussian random 
matrices with elements distributed according to (3.2). To calculate 
p(l)(x; r) for these random matrices we choose a definite value of N 
( N =  11) and use a computer program to generate a large number M 
(M = 5000) of random matrices specified according to (3.2) with a definite 
value of r (r = 0.015). The eigenvalues of each matrix are calculated and 
multiplied by the scale ~/(2N--(lrx)2) 1/2 so  that the density at large distan- 
ces from the origin is unity. The number of scaled eigenvalues in intervals 
of length dX (dX= 0.1) is calculated and divided by M to give an empirical 
bar graph of the density. The bar graph is plotted in Fig. 2a and compared 
with the theoretical curve specified by (3.26a), with p = 1 and r replaced 
by 2Nz/zr 2. 

The two-point equal-parameter distribution can be calculated empiri- 
cally from a formula analogous of (2.24): 

p(2)(X', Y; ~) 
p(~)( Y; ~:) 

= ~' P(j; X, Y) (3.27) 

where P(j; X, Y) denotes the p.d.f, for the event that the scaled eigenvalue 
with label j occurs within the interval [X, X+ dX], given that there is a 
scaled eigenvalue at the point Y. The dash on the sum indicates that the 
label of the scaled eigenvalue at Y is not included in the sum. To use this 

822/89/1-2-7 
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( a )  pm(X;r) 

2 . 2  

i. 5 

1 5 

A 
_ . . 

, . r  

(b) 

- 2  - 1  

0(2)(0, X; r)/p(t)(O; r) 

1 2 

Fig. 2. (a) Comparison between the density p~I~(X; z), 3 =0.015, calculated empirically from 
5,000 computer generated parameter-dependent Gaussian random matrices, intermediate 
between anti-symmetric Hermitian and Hermitian and of dimension 11 x 11, and the scaled 
limit of the same quantity. (b) Same as in Fig. 2a for the quantity ap~)((O, 0), (X; 3))/ 
p~j)(0; 0) with 3=0.015. The bar graph was generated from 3,000 pairs of random matrices 
of dimension 12 x 12. 

formula, we first proceed as in the calculation of the density and calculate 
and scale the eigenvalues of each computer-generated random matrix (we 
chose r = 0.015). Unlike the calculation of the density, it is necessary to 
reject a large number of these matrices because there will be no scaled 
eigenvalue is some small neighborhood [-dY/2 + Y, Y+dY/2] of the 
point Y. We chose Y=0 and dY=0.2. A total of 1500 11 x 11 accepted 
random matrices were generated, and the eigenvalues recorded for the 
empirical computation of the p.d.f.'s P(j; X, 0) and thus from (3.27) for 
the empirical computation of two-point equal-parameter distribution. The 
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results of this calculation are given as a bar graph in Fig. 2b and compared 
with the theoretical curve specified by (3.26b) with p = 1 and r replaced 
by 2N'r/n 2. 

4. CIRCULAR ENSEMBLE DESCRIPTION 

A Brownian motion theory of parameter-dependent circular ensembles 
was devised by Dyson. (3) The theory gives that the eigenvalue p.d.f, of a 
random unitary matrix evolving towards a member of the CUE satisfies the 
Fokker-Planck equation in Proposition 2.1 with W therein replaced by its 
periodic version: 

W= - ~ log Isin n ( x ,  - x j ) /L I ,  - L / 2  <~ xj <~ L/2 (4.1) 
l <~ j < k <~ N 

For the COE ~ CUE transition the density-density correlation has been 
calculated in ref. 5 (see eq. (1.1) above) and the equal-parameter distribu- 
tion has been calculated in ref. 11. For both quantities, agreement was 
found with the corresponding quantities in the scaled N ~ oo limit of the 
GOE ~ G U E  transition (for the density-density correlation, this was 
demonstrated in Section 2.3). 

Our objective in this section is to calculate the equal parameter dis- 
tribution in the circular ensemble for the analogue of the Gaussian anti- 
symmetric Hermitian to GUE transition. The analogue of the eigenvalue 
p.d.f, is defined as the solution of the Fokker-Planck equation in Proposi- 
tion 2.1 with W given by (4.1) and initial conditions 

1 
/(X,,..., XN)-" CN 1 <~j<kI~<~[N/2] 

sin n(xj - xl,)/L sin n(xj + xk)/L 

[N]2] 

X H O(Xj--XN+I--J) X~)(XI '""X(N+I)/2)  (4.2a1 
j=l 

where 

X(NC) = 1 
[N/2] 

for N even, Z = I-I sin2 ~xj/L O(X(N + 1)/2) for N odd 
j=l (4.2b) 
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Since the Fokker-Planck equation in Proposition 2.1 with W replaced 
by (4.1) has Green function tS' ~o) 

I xN; 

sin 7t( x k - x j ) / L  
=erg~ ]-I si~z(X(k0---'S_~L det[g(C)(xJ'O),Xk)]j,k=l ..... N (4.3a) 

l < ~ j < k < ~ N  

where 

g(C) (o) 1 (x) , Xk) = Z O~(rdx(~ j Xk)/L; q) 

Eo "= 12 
1) and q : = e-  27t2r/L2 

(4.3b) 

with 0s = 02 for N even, 0s = 03 for N odd, our task is to compute (3.4) and 
(3.5) with G given by (4.3a) and f given by (4.2). 

Our strategy is analogous to that used in the previous section: we first 
express the eigenvalue p.d.f. (3.4) as a Pfaffian and then write p, as a 
quaternion determinant involving appropriate skew orthogonal poly- 
nomials. With G given by (4.3) and f given by (4.2), the eigenvalue p.d.f. 
(3.4) is given in terms of a Pfaffian according to Proposition 3.1 with Ha 
replaced by 

1 fL/2 dR 
H~C)(x, y; r ) " = ~ - i  ~o sin 2rm/L (O~(zr(u-x)/L; q) O~(rr(u + y)/L; q) 

-Os(rc(u- y)/L; q) O~(zr(u + x)/L; q)) 

FtC)(x; "r) "= �89 q) 

and F(x; "c) replaced by 

(4.4a) 

(4.4b) 

(of course Eo and CN also require replacing). 
The appropriate skew symmetric inner product < )(~)(c) say is now 

given by (c.f. (3.7)) 

( f i g )  a(~'(C) = fL/2 dyl fL/2 dy2 Ha, C)(yl, Y2," z) f (Y i )  g(Y2) 
"J - -  L / 2  " - -  L / 2  

(4.5a) 

and in the limit z ~ 0 this reduces to 

< f i g >  ~)(c)= I fL/2 dx 
-o sin 2rtx/L ( f (x)  g ( - x ) - f ( - x )  g(x)) (4.5b) 
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For the circular ensemble the skew orthogonal "polynomials" are linear 
combinations from the set { e 2mtj- (N+ I)/2) x/L}j_ 1 . . . . .  N "  This is a conse- 
quence of the Vandermonde-type expansion 

I-I 
l < ~ j < k < ~ N  

2 sin n(Xk -- x j ) / L  = i - u ~ ' -  1)/2 det[ e 2 n i x . t ( k - ( N +  I)/2)/L'] 
aj, k = l  ..... N 

used in the Green function (4.3a). From the theory of Section 2.2 we have 
that if the skew orthogonal polynomials of the z = 0 inner product are of 
the form 

N 

Un(x; O) -- E an e2nitn-(N+ l)12)xlL (4.6a) 
n = l  

then the skew orthogonal polynomials for the inner product (4.5a) are 
given by 

N 

U,,(x; z) = ~ a,,q t ' - t N +  l)/2))2x/L e2ni(n--(N+ l)/2)x/L (4.6b) 
n = l  

Using the integration formula 

Z./2 sin 2 n p x / L  ~(L/2) sgn(p), 
sin 2 n x / L  dx  = [0, 

p odd 
(4.7) 

p even 

we can readily check that the functions 

f e2ni(n + 1 - (N.+: 1 ) /2)x /L  .q_ e2ni( 1 - (N  + 1 ) /2)x /L  

U n ( x ;  O) ~.  ~ e  2hi(n+ I - ( N +  l )12)xlL e 2 n i ( n - - I - - ( N +  l)12)x/L 

~e 2ni(2 - ( N  + 1 ) / 2 ) x / L  

n even 

n odd :~ 1 (4.8a) 

n = l  

are skew orthogonal with respect to (4.5b) with normalization 

u, ,= - i L  (4.8b) 

and are of the form (4.6a). Thus, according to (4.6b), 

q - ( .  + 1 - ( N +  1 )/2)2e2Zti(n + 1 - ( N +  1 ) /2 )  x /L  

+ q-~ ~ - ( N +  l)/2)2e2ni( l - t N +  l ) / 2 )  x /L  

U n ( X  ' .r __ q - ( n +  l - - ( N +  l ) /2 )2e2n i (n+ I - - ( N +  l ) / 2 ) x / L  

__ q --(n -- 1 -- ( N +  1 )/2)2e2ni(n - -  1 - -  ( N +  1 ) /2 )  x /L  

q - ( 2  - ( N  + 1 )/2)2e2ni(2 - ( N +  1 ) / 2 )  x /L  

n even 

n odd :/: 1 

n = l  

(4.8c) 

are skew orthogonal with respect to (4.5a). 
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Propositions 3.2 and 3.3 still apply for p, ,  except that now wl(y)= 1, 
Ha is to be replaced by H~ c) as given by (4.4a), F(x; 3) is to be replaced 
by F(C)(x; z) as given by (4.4b) and the intervals of integration ( - o o ,  oo) 
are now [ -L /2 ,  L/2]. Using (4.7) to carry out the integrations in the 
modified form of the definition of Vk(x; 3) given in Proposition 3.2, we 
obtain the explicit formulas 

g 2 n _  l ( X ;  3 )  ----- iq  (3 /2 -  2n + N/2)2e2ni(3/2- 2n + N/2) x/L (n ~- 1 ) (4.9a) 

I oO 
i ~ - s g n ( p -  1/2) q(2p--2n+(N+ l)/2)2e2ni(2p--2n+(N+ 1)/2)x/L 

oo 

+ 2  
p= --oo 

i oo 

P' I (X;  3 ) = - 2  
p ~  -oo  

\ 
qt2p-2 + ( N +  l ) /2)2e2ni(2p-2 + ( N +  l ) / 2 ) x / L )  s g n ( p -  1/2) 

(4.9b) 

s g n ( p -  1/2) q(2p--3+(N+ 1)/2)2e2ni{2p--3+(N+ l)/2)x/L 

(4.9c) 

while carrying out the integration in the modified form of the definition of 
aj in Proposition 3.3 gives 

f 
0, j odd ( # 1 )  

a j=  1, j =  1 (4.10) 

2, j even 

All the quantities in Propositions 3.2 and 3.3 are thus known explicitly, and 
therefore so is p.  in the finite system. To evaluate p.  in the thermodynamic 
limit, it still remains to obtain the asymptotic values of { U.(x; 3)}.=0, ~ .... 
etc. which, following the strategy used in the previous sections, allows the 
asymptotic value of the sums to be computed. The cases N even and N odd 
will be treated separately. 

N even 

From (4.8) and (4.9), for N-~ oo and 2 j / N - = :  t fixed, 

U 2 j (  X ; 3)  ,~ e 2( Ttp )2 r( t - l /2 )2e2nipx( t - 1/2) _[_ e( np )2 r/2e - ~tipx 

2 d ( e2 (~p)2 r( t - 1/2 )2eEztipx( t - 1/2) ) 

V2j+ l(X; z) ~ ie -2('~p)2r~t- 1/2)2e-2'ap~(t-1/2) 

(4.11a) 

(4.11b) 

(4.11e) 
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V2j(x; ~)~-~- ds sgn(s) e -- 2(rrp)2r(s - -  t + l / 2 ) 2 e 2 r t i p x ( s  - -  t + I/2) 

+ ds sgn(s) e-2(np)2r(s+l/2)2e2nipx(s+l/2) (4.1 ld) 
wCX:) 

Also 15) 

gtC)(x, y; z) ~ ( ~ )  I/2 exp[ - ( x -  y)2/2r] (4.12a) 

so comparison with (2.20e) shows 

zcp 
H~C)(x, y; z ) ~ - ~  H,(x,  y; r) (4.12b) 

Using these results we see that, as in the Gaussian case, the sums in 
Proposition 3.2 tend to integrals in the thermodynamic limit. Straight- 
forward manipulation of the integrals gives 

S~n~C)(x; y; r ) ~  ~ " ( x ,  y; z) (4.13a) 

1 / ~ " ( x ,  , r) (4.13b) DeVe"~ C)( x, y; r ) ~  - ~  y" 

Iev~nr y; Z)'~ --N[eVr y; r) (4.13c) 

where ~ n  etc. are given by (3.20). In the thermodynamic limit p,, is there- 
fore given by the right hand side of (3.21), in agreement with the scaled 
limit in the Gaussian case. 

N odd 

From (4.8) and (4.9), modified according to the prescription of 
Proposition 3.3, for N ~ oo with N odd and 2j/N = t fixed, 

U2j(x; r),~ e 2('w)2r(t- l/2)2e21ripx(t-1/2)_ e(np)2r/2enipx (4.14a) 

- 2 d ~ l/2)2e2nipx( 1/2)) (4.14b) U 2 j  +1 ( x ;  ~') ,~ ~ ,  ~-~ (6  2(n:p)2 t--  , - -  

V'2j+ l(X; "t')~ ie -2(~p)2r(t- l/2)2e--2rripx(t--1/2)) (4.14c) 

V2j(x; T)~- -~  ds sgn(s) e -2(rrp)2r(s-t+ l/2) e 2nipx(s-t+ l/2) 
- -  t:t3 

- ds sgn(s) e -2(np)2r(s- l/2)2e2rtipx(s-1/2) (4.14d) 
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and the result (4.12b) holds independent of the parity of N. Substitution in 
Proposition 3.3 shows that the results (4.13) again hold, with the super- 
script "even" now replaced by "odd" (~ oaa etc. is given by (4.23b)-(4.25b)), 
and consequently the thermodynamic value of p, with N odd agree with 
the result obtained in the scaled N--+ oo limit of the Gaussian case, which 
is given by the fight hand side of (3.21) with ~ n  etc. replaced by ~oaa 
etc.. 

5. D E N S I T Y - D E N S I T Y  C O R R E L A T I O N  FOR THE C I R C U L A R  
E N S E M  BLE D E S C R I P T I O N  

The formalism of Section 2 only requires minor modification to be 
applicable to the calculation of the density--density correlation in the cir- 
cular ensemble Brownian motion model of the previous section. This is also 
true of the calculation of the density--density correlation for the Gaussian 
anti-symmetric Hermitian to GUE transition. However, in the latter case, 
it turns out that the task of simplifying the analogue of the sums in 
Proposition 2.3 in the scaled N--+ oo limit is very tedious. From the 
evidence of the results of the calculations for p, ,  we would expect both 
descriptions would give the same expressions in the N-+ oo limit, so little 
is lost by omitting this calculation. Even in the circular ensemble case, the 
task of simplifying the analogue of the sums in Proposition 2.3 is still 
difficult; for this reason we have restricted attention to the calculation of 
dP~)((Xa, ra), (Xb, Vb)) with ~'a = 0.  

As we have noted, the formula in Proposition 2.3 for aP~)is again 
applicable in the present setting, after minor modification. These modifica- 
tions are necessary since in the derivation of Proposition 2.3 it was 
assumed that the initial distribution was of the form (2.12) and that N was 
even. Also, we want to specialize the formulas so that r a = 0. Taking these 
points of detail into consideration, but still following the general strategy 
which led to Proposition 2.3, we find that the analogue of Proposition 2.3 
in the present setting is given by the following result. 

Proposition 5.1. Let N be even and suppose the initial distribu- 
tion is given by (4.2) and the Green function is given by (4.3). Define 

where 

L/2 a(y) 
l'Vjk := - f-L/2 sin 2rcy/L (Ay(y) A k ( - . v ) - A j ( - y )  Ak(y)) dy 

f L/2 
Aj(y) "= "-L/2 b(s) g( C)( y, s; z) Uj(s; r) ds 
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with { Uj(x; r)}j=, .... given by (4.8c). Then dP~2)((X,, 0), (Xb, rb)) is given 
r with kj replaced by uj and by the formula given in Proposition 2.3 for dP(2) 

~,=0,  rb =r .  For N odd modify the definition of Aj(y) to read 

Aj ( y ) ' =  ; t./2 

-- L/2 
b(s) g(C)(y, s; r) Uj(s; r )ds  

and let the above form for Wjk apply for k(j)4= N +  1, while for k ( j )=  
N + 1 let 

f L/2 
W j ,  N +  1 - -  - -WN+I . j ' - - I_L /2b( s )  g(C)(y,s; r) grj(S; z)ds 

Then again dP~2)((Xa, 0), (Xb, "Cb) ) is given by the formula given in Proposi- 
tion 2.3 for dP~2) with hg replaced by uj and ~ .=0 ,  Vb = r  and the upper 
terminals of summation equal to (N + 1)/2. 

The task is now to compute the above sums in Proposition 2.3, 
modified according to the above proposition, in the thermodynamic limit. 
As we have done throughout, we do this by computing the asymptotics of 
the summands. The sums then become Riemann integrals, which we 
attempt to express in the simplest form. As the calculation is very similar 
to that presented in previous sections, we will present only the result for 
the asymptotics of the distinct sums in Proposition 2.3. 

N even 

For N even we find 

2 K2j, Zj_l(Xa, Xb; ~) 

j = l  Uj 

4p 2 dt e 21 np )2 t cos 2rip t( x.  -- x h ) 

X dR e - 2( np )2 u2v cos 2rcpu( x .  -- X b ) 

~ 1/2 + dt e 2(rip)2 t2r 

"0  
cos 2rip t( x.  + x b ) 

x d u e  - 2(rip )2 u2v cos 2npu( x . + x b ) ) (5.1a) 
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N/2 1 
ujuj, I2j 2 j ' - l (Xa"  O) J2j' 2.] l(Xb; 7d) 

j , j ' - '2  

~ _p~ ( 16 

4 2npx~ 
--'-'----'--- e (np)2r/2 sin 2npx,, sin n p x  b 

f ?  1 e ( 7tp )2 r/2 X du e -2('~p)2u2~ sin 2npUXb + 2npxa sin 2npxa 

f 1/2 x due -2(np)2u2r 2 Re( - - 6 e  2nip'%(u+ 1/2) _~. 2e2rap:%(u_ 1/2)) 
.'0 

f i/2 
- 16 sin npxa due  2(np)2u2r sin 2~zpUXb sin 2npux,, 

"0 

fl G X d t e  -2(np)2t2r sin 2 n p t X b - - ~  
/2 

16 

2npx,, 
e (np)2r/2 COS 7cpx a sin ~ p x  b 

f l/2 
• d u e  -2(np)2u2r sin 2zrpux  b sin 2npuxa 

"0 

f I/2 - 8 dt e 2( '~p)2 t 2r 
"0 

cos 2np t (Xa -  xb) 

fl/2 x du e - 2( 7tp )2 u2r COS 2npu( x,, -- x b ) 
"0 

~ 1/2 
- -  8 dt e 2( ~ p ) 2  t 2r 

"0 
cos 2rip t( x,, + x b ) 

fl,  ) x d u e  - 2(~p)2 .~ cos 2npu(x~ + Xb) (5.1 b ) 
~0 

N/2 1 N/2 1 
2 Ul Uj, I2 2j'--l(Xa" O) J2j' l(Xb; T) - -  I2j l(Xa; 0) J2 ( x  b" T) J , "=  "_ UjUl ,2j--I , 

10 2 ( 8 sin 2npx~ . 7CPXbe(np)Er/2 
~ -4 - 2npx a sin 

X d u e  - 2t,~p)2.z~ sin 2npUXb (5.1C) 

8 sin 2npx,, et,~p)2 ~/2 f 1/2 ) 
2nPXa "o due  -2(lrp)2u2r COS zCPXb(2U + 1) (5.1d) 
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N/2 1 
E (I2j, 2j'(Xa'O) J2j'-l, Zj-l(Xb;'C)+JEj, Ej'(Xb''C) lEj'-l,2j-l(Xa'O)) 

j, j , =  2 u j u j  ' 

N/2 1 
--  E I2j, 2 j , _ l ( X a ;  O) J 2 j , , 2 j _ l ( X b ;  75) (5 .1e )  

j, j ,  = z UjUj , 

and 

N/2 1 N/2 1 
y, = 2 u l ~  uj, 12, 2j,(x,; 0) J2j ' - l ,  t(x6; z) +j~.=__ ~UjUl Izj_ l,l (x,,', 0) J2, 2j(xb; r) 

,-..., __(-- N/~" 1 i 2 ,2 j , _ l (Xa .  ' O)J: , j ,  ,(xb; r) 
,,j,= 2 ut uj , 

+ ~ I2j. ,(x,," O) J2 t(Xb" r) (5.1f) 
j - -2  UJ u l ' , 2j-- ' 

One of the reasons for the tediousness of this calculation is the need to con- 
sider separately the sums in (5.1c) and (5.1e). This is due to the special 
form of U,(x; r). 

Combining these asymptotic results gives as our final formula 

, ~ p ~ ( ( x , , ,  0 ) ,  (x~, ,  r)) 

= _4p2 sin 2rcpx .  sin rcpxh e~,W)2~/2 d u e  -2~'~p)2u2~ sin 2rcpUXb 
2rcp x ~, t /2 

--8p 2 sin rcpx.  d u e  2~'w~2"~ sin 2rcpuxb sin 2rcpux .  

x dt  e -2~'w)~t'~ sin 2rcptXb--8p2e~'W)2~/2 ~/2 2rcpx~ cos rcpx.  sin rCpXb 

f 
l/2 

x d u e  - 2~,~p)2 ~2, sin 2zrpux b sin 2zrpux 
"0 

fo ~/2 + 4p 2 dt  e 2t np )2t 2r cos 2rcpt(x~ - xh)  

f 
oo 

x d u e  - 2(np)2 u2r 
1/2 

cos 2rcpu( x ,, - X b ) 

f 1/2 + 4 p  2 dt  e 2(np)2t2r cos 2rcpt(x~ + Xb) 
"~0 

GO 
x du e - 2(ztp)2 u2~ 

1/2 
cos 2rcpu( x a + x b) (5.2) 
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,p~) ((o, o), (x; .,-))/,oo) (o; o) 

2.25 

2 

1.5 

-, i o o ~ .5 0.75 

, x  

Fig. 3. Same as in Fig. 2a for the quantity ap~)((0, 0), (X; r))/p())(0; 0) with r=0.025. The 
bar graph was generated from 3,000 pairs of random matrices of dimension 12 x 12. 

The density-density correlation (5.2) can be calculated empirically by 
generating pairs of random matrices in an analogous fashion to the calcula- 

r for the GOE---) GUE transition (recall the text above (2.24)). tion of aP(2) 
The first member of each pair is a Gaussian anti-symmetric Hermitian ran= 
dom matrix generated according to (3.1). However, since the correspond- 
ing density is not uniform in the neighborhood of the origin, we must reject 
the matrix unless there is a scaled eigenvalue in some interval [ Y, Y + dY] 
(recall the discussion of the calculation of (3.27)). We chose Y= 0 and 
dY= 0.I. The second member is constructed from the first (assumed accepted) 
according to Definition 2.1 with a specific value of r. Analogous to (3.27) 
we compute the density-density correlation using the formula 

o), (x, -r)) 
= -p(~)(X; ~)+ ~ P(j; X) (5.3) 

p(1)(0;  I") j = - - { N - I ) / 2  

where P(j; X) has the same meaning as in (3.27). The result of this com- 
putation for ~: =0.025 and N =  12 is given as a bar graph in Fig. 3 and 
compared with the theoretical curve given by (5.2) with p =  1 and r 
replaced by 2Nr/zr 2. 

N odd 

find 
For N even the sum (5.1a) remains applicable. For the other sums we 
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(N-- 1)/2 1 
Z 

j , j ,=2 usuj' 
~ Iza. v , - l (X~;  O) J v ' , V - l ( X b ;  3) 

_p2 ( 8 
4 \ 2~zpx. 

f 1/2 
- - ~  e (np)2r/2 sin 27rpx  a cos 7~px b due  

.,o 

f 1/2 + 16 cos npx.  due  -2(~p)2u2~ 
~0 

COS 2zcpux b 

--2(zrp)2u2r COS 2Tgpux  b 

f 1/2 x dt e 2< ,w )2 t2r sin 2rcp tx b sin 2rip tx .  - ~  
"0 

16 
2npx .  

X d u  e - 2( rip)2 u2r 
~0 

cos 2npuxb sin 2npux.  

e (np)2r/2 COS 7~px a COS 7~px b 

f 1/2 
-- 8 dt e 2 ( h a ) 2  t 2r 

~0 

f 1/2 COS 2zcp t( X ,, - -  X b) d u  e - 2( np )2 u2r cos 2~zpu( x ,, - -  X b ) 
"0 

f !/2 )2 
- -  8 dt e 2( np t2r 

"0 
cos 2rip t (x .  + x b) 

f 1/2 x due  
"0 

- -  2( np )2 u2r COS 2npu( x . + x b ) ) 

( N -  I ) /2  1 
E 

. / = 2  ujuj, 
Izj. v ' - l ( x . ;  0) Jr'.  v - l ( x h ;  r) 

(N--1)/2 1 
Z 

j . j ' = 2  UjUj, 
( I2 j  ' 2 j , (Xa;  O) J2 j '  - !, 2 j -  I (Xb;  "C) 

+ J2j,  2 j ' (Xb;  3) I 2 j , _  1, 2 j - l (Xa ;  0))  

( N - -  1 ) /2 

E 
j ' = 2  

1 

UlUj, 
I2. v ' - t (x . ;  0) Jr' ,  ~(x~; ~) 

+ 
<N--~)/z 1 

E .... I2j" l(Xa; O) J2,2j-l(Xb; 3) 
j=2  UjUl 

,~, __((N~I)/2 1 

j ' =2  UlUj '  
~ I2,2j,(x.; O) Jz j ' -  l, l(Xb; 3) 

+ 
<N-- 1)/2 1 

Z 
j=2 u/u1 

I2/_ t, l(X.; 0) J2,2j(Xb, r)) ~' 0 

(5.4a) 

(5.4b) 

(5.4c) 
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(N -- 1 )/2 

E 
j - - I  

1 

UNUj 
Iv, u(x,,; O) ]~+ ,,v+ ,(xb; r 

(N-- 1)/2 1 
2 

j---- I UJ u N  
IN, 2j-  l(Xa; 0) J2j, N+ l(Xb'~ T) 

4p 2 

2~zpx ,, 
- ~  sin 21tpx a c o s  7CpXb e(np)2r/2 e -2(np)2rs2 COS 21tpsx b ds 

E + 8p  2 COS ltpx~ e -2(np)2s2r c o s  rcpx~ 

1/2 
x e 2~ "p )2 ,~, cos 2npux,,  cos 2npux  b du ( 5.4d ) 

C o m b i n i n g  these a sympto t i c  results  gives tha t  in the t h e r m o d y n a m i c  

limit, for N o d d  

T X ap(2)(( ~, 0), (xe, ~)) 

~oo sin 2npx~ cos npxo e(np)2r/2 d u  e -2(rtp)2u2r 
= 4p2 2~ZpXa 1/2 cos 2~zpux b 

f 1/2 - - 8 p  2 COS 7cpx a d u e  2(rtp)2u2r c o s  2rgpux b COS 2npux~ 
~0 

f 
~ 8p2etnp)2r/2 

X d t  e -2(np)2t2r c o s  2~zptx b - -  
~ /2 21tpx ~ 

COS 7cpx b sin npx~ 

i 
oo 

x du e -  2(~p)2 u21r COS 2~tpuxb COS 2npux  
1/2 

~ /2 
+ 4p 2 dt e 2(rip)2 t2r cos 2rrp t(x~ -- x b) 

r 
od 

x du e - 2(=p): .2~ cos 2npu(x~ - Xb) 
1/2 

~ 1/2 
+ 4 p  2 dt e 2(ttp)2t2~ 

"0 
COS 2~zpt(Xa + Xb) 

x d u e  - z(,,p)2,,2~ cos 2rcpu(x,, + Xb) 
/2 

(5.5) 
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As a check on this formula, we note that for N odd, p(~)(0; 0 )=  0, so 
(5.3) gives that dP~2)((O, 0), (X, r ) = 0 .  It is a simple exercise to verify that 
(5.5) has this property. 

Further checks on both (5.2) and (5.5) are possible. In the limit ~ ~ 0 
with Xa # Xb we must have 

T ( A H ) { y  , ~p(r2)((x~, 0), (x~, ~))~ P(2) ,..~ x~) (5.6) 

T(AH) denotes the scaled truncated two-point distribution function where p (2) 
for Gaussian antisymmetric Hermitian random matrices (for N odd this 
statement also assumes x=, xb :/: z). Explicitly t4~ 

r t A H ) t  ~. p2 (/sin top(x,,-Xb) sin top(x,, + Xb)) 2 
P(2) ,..a, Xb)- -- \ ~z~x~'x~ - t - ( -  I) N top(x,, + Xb) (5.7) 

To verify the property (5.6) we use the formulas 

f 
oo 

lim e -~~ cos 2nspx ds sin npx 
e --* 0 1/2 --- 2rcpx ' x # 0 

and 

foo lim e -~'2 sin 2zcspx ds = cos.. rcpx 0 X 
e - ,  0 1/2 z n p x  

in (5.2) and (5.5). After some manipulation the expression (5.7) is obtained. 

6. C O N C L U D I N G  R E M A R K S  

The density-density correlation and n-point equal parameter distribu- 
tion can be computed exactly for parameter-dependent Gaussian random 
matrices intermediate between symmetric and Hermitian, and anti-sym- 
metric Hermitian and Hermitian. The same correlations can also be com- 
puted for the circular ensemble analogues of the these matrices. 

Although the equal-parameter distributions, for finite N in the 
Gaussian case at least, have been calculated previously, we have 
demonstrated how all correlations can be the calculated through the use of 
general formulas based on skew-orthogonal polynomials. Furthermore, 
since parameter-dependent random matrices are very simple to generate on 
a computer, we have been able to provide the empirical evaluation of some 
these correlations and thereby to realize the corresponding theoretical 
predictions, up to statistical accuracy. 
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